Binding Theory

- The binding theory accounts for the distribution of reflexives and reciprocals, bound pronouns, and referring expressions (R-expressions).
- Let's begin with some standard definitions.
(1) Binding Theory:
a. Principle A:

An anaphor must be bound in its domain.
b. Principle B:

A pronoun must be free in its domain.
c. Principle C:

An R-expression must be free.
(2) Domain:
α is the domain for β iff α is the smallest TP containing β and the governor of β.
(3) Binding:
α binds β iff α c-commands and is coindexed with β.

- Each principle accounts for a different kind of element.
- Principle A determines the distribution of reflexives, which must be bound locally.
(4) a. ${ }^{*} \operatorname{Mary}_{i}$ said that $\left[\mathrm{Joe}_{k}\right.$ liked these pictures of herself $\left.{ }_{i}\right]$.
b. Mary_{i} said that [Joe_{k} liked these pictures of himself ${ }_{k}$].
- Principle B precludes pronouns from being locally bound.
(5) a. Mary_{i} said that $\left[\mathrm{Joe}_{k}\right.$ liked these pictures of $\left.\mathrm{her}_{i}\right]$.
b. ${ }^{*}$ Mary $_{i}$ said that $\left[\mathrm{Joe}_{k}\right.$ liked these pictures of him ${ }_{k}$].
- Principle C forbids R-expressions from being c-commanded by a conindexed element:
(6) ${ }^{*}$ She $_{i}$ said that $\left[\mathrm{Joe}_{k}\right.$ liked these pictures of Mary ${ }_{i}$].

Pronouns embedded in PPs do not always cause a strong violation of Principle B.

We usually think of these as names, but definite descriptions (such as epithets) are subject to Principle C as well: Harvey ${ }_{i}$ says Sally hates the bastard $_{\star i}$.

- These apply straightforwardly where no A^{\prime}-movement is involved.
- From a GB point of view, as far as the c-command relations of the elements above are concerned, the binding principles could hold at DS, SS, or LF!
- From the minimalist point of view we should want to say that they hold at LF, since this is the only conceptually motivated level of representation of the three.
- There will be issues with this, of course.
- Things look good if you restrict your view to Principle A.
- Adding Principles B and C to the mix creates a number of complications that force us to look specifically at at the syntax of reflexive binding.
- We will have to introduce new economy constraints to the mix and revise our view of where binding actually holds.

2

Complications from movement

- Movement significantly complicates the view of how the binding theory works.
- We have already seen some of these complications.
(7) ${ }^{\star} \mathrm{John}_{i}$ wondered which woman liked which pictures of himself f_{i}
- If we assume covert $w h$-movement of the full $w h$-phrase which pictures of himself, we expect that John should be able to bind himself in this example.
(8) John_{i} wondered $\left[[\text { which picture of himself }]_{i}+[\text { which woman }]_{j}\left[t_{j}\right.\right.$ liked t_{k}]]
- The proposal we saw was that covert movement need only move the $w h$-word, not the whole $w h$-phrase.
- This prevents himself from moving into a position where it could be bound:
(9) ${ }^{\star} \mathrm{John}_{i}$ wondered $\left[\right.$ which $_{k}+[\text { which woman }]_{j}\left[t_{j}\right.$ liked $\left[t_{k}\right.$ picture of himself $\left.\left.\left.{ }_{i}\right]\right]\right]$
- But this solution cannot explain all of the reflexive binding patterns we observe.
- In (10), it appears as though we want to make reference to the base position of himself in order to explain how it is bound by Fred.
- This is simply done if we assume a level like D-structure:
(10) John $_{i}$ wondered which picture of himself $f_{i / k}$ Fred $_{k}$ liked.
a. $D S$:

John wondered [CP [TP Fred ${ }_{k}$ liked [which picture of himself ${ }_{k}$]].
b. $L F$:

John $_{i}$ wondered $\left[\right.$ CP $[\text { which picture of himself }]_{m}\left[{ }_{\text {TP }}\right.$ Fred liked $\left.t_{m}\right]$.

- We've seen no independent evidence for DS, however, and have so far assumed that it does not exist.
- To avoid reintroducing DS, we could try assuming that the binding principles apply throughout the course of the derivation rather than at specific levels.
- But there are empirical problems with such an approach. The reciprocal each other in (11) should be able to be bound after wh-movement under this view.
(11) The students s_{i} asked [what attitudes about about each other $\left.{ }_{k / * i}\right]_{m}$ the teachers $_{k}$ had t_{m}.
- Thus, it cannot be the case that the binding principles apply at all times.

3 Principle A under the copy theory

- Once we adopt the view that traces are copies of moved elements, we may find a way out of the above conundrum.
- Similar to the way PF handles multiple copies, we must reduce the chains that occur at LF so that they behave similar to traces.
- The solution to the problems above will be to selectively delete parts of the copies at LF.
- Movement leaves behind several copies at LF, and movement of material including an anaphor will create several copies of the anaphor.
- Thus, a more accurate Spell Out representation of (10) is as follows:
(12) John wondered [CP [which picture of himself] [Fred liked [which picture of himself]].
- This means at LF, each copy of himself is in an appropriate binding domain, consistent with Principle A.
- The lower copy is bound by Fred.
- The higher copy is bound by John.
- So we have the right configuration for each of the possible readings. But how do we reduce the structure to just what we need?
3.1 Operators, variables, and deletion
- Critically, (10) is ambiguous between only two readings: himself is bound either by Fred or by John, but not by both.
- From this fact, it stands to reason that only one copy is interpreted at LF.

So, as long as the right configuration is met at some point, all will be well.

We need to do something, anyway, since we don't want superfluous LF copies to introduce Binding Theory violations of their own.

Note that this requires us to move the whole wh-phrase, not just the wh-word as proposed above. We will come back to this.

- To interpret (10) correctly, we must convert it into an operator-variable format and get rid of one of the copies of himself.
- A common way of understanding wh-movement in GB is that wh-elements in SpecCP are quantificational operators that bind variables in the form of wh-traces.
- Since we no longer have traces, we must convert copies to variables at LF.
- Additionally, we must ensure that there is no repeated material at LF while creating a valid operator-variable structure.
- The simplest way to do this is simply to delete the lowest copy at LF, resulting in the interpretation in (14).
(13) John wondered [CP [which picture of himself] [Fred liked fhimselfy].
(14) John wondered which x, x a picture of himself, Fred liked x.
- The binder which x is restricted by the material a picture of himself.
- However, an alternative exists. We can delete all but the wh-element in the higher copy, and then delete the wh-word in the lower copy.
- The result is the interpretation in (16).
(15) John wondered [CP [which [Fred liked [picture of himself]].
(16) John wondered which x Fred liked x, x a picture of himself.
- Here, the variable is restricted rather than the binder.
- Notice that (15) is very similar to the configuration used to explain (10a) above.
- The difference here is that we did not move the $w h$-word alone, but selectively deleted material in different copies of the the wh-phrase.
- Indeed, evidence from overt $w h$-movement suggests that this configuration must be interpretable at LF, since it can be generated overtly in some languages.

See Fox 1999 for the details on how this operation would work. The discussion below is a sketch. Another approach I really like is Vicente 2009.
represents LF deletion.

Here, John binds himself.

Presumably, because LF does not have to worry about issues of linearization, the deletion operation behaves differently than the one at PF.

But also notice that the explanation for why (10) is ungrammatical requires that it not be possible to interpret the full copy in the higher position, as in (13). We will have to look for an explanation of this fact.
(17) French:
a. [Combien de livres] ${ }_{i}$ a-t-il consultés t_{i} ? how.many of book has-he consulted
b. Combien ${ }_{i}$ a-t-il consultés $\left[t_{i}\right.$ de livres]? how.many has-he consulted of book

(18) German:

a. [Was für Bücher] ${ }_{i}$ hast du t_{i} gelesen? what for books have you read
b. Was hast du [t_{i} für Bücher] gelesen? what have you for books read

- Thus, if we assume a copy-and-delete approach for LF, we can account for the ambiguity of (10).
3.2 How is this better than what we had before?
- This analysis relies on two innovations: The Copy Theory of Movement, and the deletion of superfluous copies at LF.
- We already have independent motivation for the Copy Theory.
- But what about LF deletion?
- We haven't seen any independent motivation for LF deletion. The motivation is completely theory-internal.
- However, even GB/Trace Theory needs some mechanism for dealing with cases such as the following:
(19) Whose goat did you see?
a. SS:
${ }^{\mathrm{CPP}}[\text { whose goat }]_{i}$ did [you see $\left.\left.t_{i}\right]\right]$?
b. $L F$:
[CP whose $_{j}$ did [TP you see $\left[t_{j}\right.$ goat]]]?
- The question here is not ranging over goats but over people x such that you saw x 's goat.
- On the GB approach, one must reconstruct goat into its base position to get this interpretation, literally putting goat back into its base position.
- The copy-and-delete approach yields the same results without reconstruction.
(20) a. LF (СTM):
[CP [whose $]$ did [you see [goat]]]?
b. Who x did you see x 's goat?
- Thus, both Trace Theory and the Copy Theory need to do something about this, and deletion seems no worse that reconstruction.

3.3 Extension to A-movement

- Though we've so far only looked at $w h$-movement, similar facts can be seen under A-movement.
- As (21a) shows, them apparently induces Principle C effects relative to John and Mary suggesting it c-commands the subject of the lower clause.
(21) a. ${ }^{*}$ It seems to them ${ }_{i}$ that $[[J o h n ~ a n d ~ M a r y] ~ i w e r e ~ a n g r y] . ~$
b. [John and Mary $]_{i}$ seem to each other ${ }_{i}\left[t_{i}\right.$ to be angry].
- To avoid a Principle C violation at LF, it is necessary to assume that the base copy of John and Mary is deleted in (22):
(22) [John and Mary] seem to each other [fo be angry].
- This allows John and Mary to bind the reciprocal without the reciprocal inducing a Principle C violation by c-commanding the base copy of John and Mary.

That is, this is a question about people, not goats.

The state of the art view is that copy-and-delete is how reconstruction actually works, just like movement.

It is thought that to is not a real preposition but some sort of Case marker that is part of the DP.

We'll come back to the details of Principle C below.

4 We're not done yet

- The solution to the the ambiguous binding of reflexives above involves partially deleting copies at LF in order to satisfy Principle A in different positions.
- However, we must now consider how this works for Principles B and C.
- Given what we saw above, why can't Fred and him be coindexed?
(23) John_{i} wondered which picture of $\operatorname{him}_{i / * k} \operatorname{Fred}_{k}$ liked.
- It is fairly easy to get a configuration consistent with Principle B, where John and him can be coindexed, as in (32a).
- However, nothing so far prevents deletion of the entire low copy, as in (32b), giving rise to the unwanted interpretation.
(24) John wondered [[which [Fred liked [picture of him]]].
(25) *John wondered [[which picture of him] [Fred liked [fhim]].
- The same problem arises for Principle C. Here, neither pronoun can be conindexed with John.
(26) $\mathrm{He}_{i / * j}^{1}$ wondered which picture of $\mathrm{John}_{j} \mathrm{he}_{i / k / * j}^{2}$ liked.
- Again, interpreting the lower copy of John leads to the right result, as in (27).
- However, interpreting the higher copy, as in (28) should allow the lower instance of $h e$ to be coindexed with John, contrary to fact.
(27) He wondered [[which [he liked [wich picture of John]]].
(28) ${ }^{*}$ He wondered [[which picture of John] [he liked []].

5 The Preference Principle

- To account for ambiguities introduced by the interaction of $w h$-movement with Principle A, we have introduced the idea that (subparts of) copies could be deleted at LF to give rise to the correct configurations to satisfy Principle A.
(29) John wondered [CP [which picture of himself] [Fred liked midel.
(30) John wondered [CP [which picture of himself]].

Notice that him is not
c-commanded by Fred here, so should be able to be coindexed with Fred.

John does not c-command he ${ }^{2}$ here, so they should be able to be coindexed.

- Critical for this is the assumption that these copies are related by a chain. Chains are reduced by deleting subparts of copies in a chain at LF.
- This worked well for Principle A, but it would appear to overgenerate when trying to account for Principles B and C.
- The proposed solution, due to Chomsky (1993), is the Preference Principle:
(31) Preference Principle:

Try to minimize the restriction in the operator position.

- What this means is that material other than the wh-word should be interpreted in a lower position (if possible).
- This will give us what we want for Principles B and C, but it should also block (29). Is this what we want?
- First, let's look at how (31) blocks overgeneration with Principles B and C.
- After this, let's return to (29). We will need to appeal to some specific assumptions about reflexive binding to get the analysis straight.

5.1 Principle B

- In example (32), we want to rule out the interpretation derived from (32b) while keeping the one from (32a).
(32) John_{i} wondered which picture of $\operatorname{him}_{i / * k} \operatorname{Fred}_{k}$ liked.
a. John wondered [[which picture of him]]].
b. *John wondered [[which picture of him] [Fred liked [f [im]].
- Nothing about the deletion operation itself rules out deletion of the entire low copy, as in (32b). This gives rise to the unwanted interpretation.
- However, (31) does give us the right result.
- The unwanted interpretation is also the one where the wh-operator retains a restrictor at LF.
- If we assume that (31) holds, example (32b) will be ruled out.
- This leaves (32a), where John binds him from outside its domain.
- Thus, the Preference Principle achieves the right results for Principle B.

Deletion is usually thought of as a form of Chain reduction really relies on the notion that copying forms chains. Chain reduction is effected by copy deletion of elements in the same chain.

Notice that him is not c-commanded by Fred here, so should be able to be coindexed with Fred.
5.2 Principle C

- A similar problem arises in (33).
- Interpreting the lower copy of John leads to a Principle C violation, but interpreting the higher copy would allow the lower instance of he to be coindexed with John, contrary to fact:
(33) $\mathrm{He}_{i / * j}$ wondered which picture of $\mathrm{John}_{j} \mathrm{he}_{i / k / * j}$ liked.
a. He wondered [[which picture of John]]].
b. ${ }^{*} \mathrm{He}$ wondered [[which picture of John] [he liked [af回]
- Again, deleting the whole lower copy would contravene (31), so (33a) should be favored over (28).
- So, again, the Preference Principle achieves the right results, ruling out the configuration where John c-command he at LF.
5.3 Motivation and Principle A (again)
- If the Preference Principle can explain Principles B and C, why does Principle A get an apparent pass?
- The idea is that since Principle A deals directly with anaphors, it must have something specifically to do with the syntax of these elements.
- The solution is to posit that reflexives must move to a position where they can be licensed by their antecedents.
- Assume that anaphors can only be bound if they agree with their antecedents.
- The mechanism we have for agreement is checking, which requires movement prior to LF.
- Thus, if reflexives agree with their antecedents, they must move to a position where they can do so by LF.
- Assume for instance that we want the Fred to bind himself. In this case, himself will move to be in a local relation with Fred.
(34) Spell Out:

John wondered [CP [which picture of himself] [Fred liked [which picture of himself]].
(35) LF w/ reflexive movement:

John wondered [CP [which picture of himself] [Fred+himself liked [which picture of himself]].

- If this is right, we still need to make sure that we reduce the number of copies of himself to just one at LF.

This seems reasonable for reflexives, but what about reciprocals? They do not seem to agree.

- We must reduce both the $w h$-movement chain and the anaphor movement chain. In other words, there are two steps here:
(36) Wh-chain reduction:

John wondered [CP [which [Fred+himself liked [picture of himself]].
(37) Anaphor chain reduction:

John wondered [CP [which [Fred+himselfliked [picture of

- Now consider what happens if we do reflexive movement for the higher copy of himself.
- If we attempt to do chain reduction in keeping with the Preference Principle, things go bad:
(38) LF $w /$ reflexive movement:

John+himself wondered [CP [which picture of himself] [Fred liked [which picture of himself]].
(39) Wh-chain reduction:

John+himself wondered [CP [which [Fred liked [picture of himself]].

- The main issue with (39) is that we wind up with two copies of himself at LF.
- Reducing the higher copy of the $w h$-element in the way we have been so far will delete the base of the reflexive movement chain.
- The remaining copies of himself do not form a chain, though. The copy local to John is not part of the $w h$-movement chain.
- Since chain reduction requires reducing copies in the same chain, there is no way to eliminate both copies of himself here in keeping with the Preference Principle while maintaining a copy of the reflexive local to John.
(40) John+himself ... [which picture of himself] $\ldots \underbrace{\text { [which picture of himself] }}$

- The only way to get an acceptable result is to violate the Preference Principle:
(41) Wh-chain reduction (Violates (31)):

John+himself wondered [CP [which picture of himself] [Fred liked [[fle]].
(42) Reflexive chain reduction:

John+himself wondered [CP [which picture of [Fred liked [aif p of imself].

- This is why the Preference Principle is stated as a preference.

A-movement requires reduction, the same as A^{\prime}-movement.

Because of this step, there is only one copy of himself, the one local to its binder Fred.

Additionally, chain reduction of the wh-chain as in (39) independently takes care of reduction of the reflexive chain.

- If (31) were an absolute, we would expect (29) to be ruled out.
- We need to state it as a preference in order to allow (41).
- This relies specifically on the proposed syntax for reflexives, explaining why Principle A gets around the Preference Principle, but not Principles B and C.
- Without this movement, Principles B and C are subject to the Preference Principle.

5.4 Economy and indices

- The Preference Principle is a kind of economy condition.
- Economy conditions are thought to decide only between convergent derivations (i.e., those that do not crash at the interfaces).
- But if it only chooses between convergent derivations, why does the Preference Principle choose (43a)?
- There's no grammatical coindexation between Fred and him in (43a).
- Example (43b) allows for grammatical coindexation between these elements.
- So shouldn't the Preference Principle choose (43b) over (43a) in order to allow grammatical coindexation between these two elements?
(43) Mary wondered which picture of $\operatorname{him}_{i / * k}$ Fred $_{k}$ liked.
a. Mary wondered [[which picture of him]]].
b. Mary wondered [[which picture of him] [Fred liked [[]].
- However, since coindexation between these two elements is impossible, we know that the Preference Principle does not select (43b).
- So it must be the case that (43a) converges, since otherwise we would expect the Preference Principle to (trivially) select (43b)
- If (43a) did not converge, the Preference Principle would not consider it.
- So why is (43a) ок? The answer seems to be that coindexation does not factor into determining whether a derivation converges or not.
- Chomsky (1993) suggests that satisfaction of the Inclusiveness Condition requires that indices not be added to syntactic objects during the course of the derivation.
- If indices are not introduced in the course of a derivation, then the problem with (43a) is only an apparent problem.
- Both of the derivations are, in fact, convergent. Since there are no indices, there is no way to compare derivations with alternative indexations.

Furthermore, the reflexive movement analysis has its antecedents in CB. Here we are adopting the idea into our Minimalist theory of the Binding Theory, so it does not decide between which approach is better.
[I'VE TRIED TO REVISE THIS SECTION A BIT, SINCE I REALIZED I DIDN'T EXPLAIN IT CLEARLY (OR TOTALLY CORRECTLY) DURING the Lecture. I hope this CLEARS UP SOME OF THE CONFUSION —NL]

In other words, indices are not syntactically present.

- Since both (43a) and (43b) are convergent, the Preference Principle will choose (43a).
- But this means that we need to reconceptualize the Binding Theory without making reference to coindexation, since indices are inconsistent with the Inclusiveness Condition!
- Fortunately, this isn't too hard to do. We can switch from speaking of coindexation to coreference:

(44) Binding Theory:

a. Principle A:

If α is an anaphor, interpret it as coreferential with a c-commanding phrase in its domain.
b. Principle B:

If α is a pronoun, interpret it as disjoint from every c-commanding phrase in its domain.
c. Principle C:

If α is an R -expression, interpret it as disjoint from every c -commanding phrase.

- This is consistent with Inclusiveness and captures the facts we've seen so far.
- It means that binding doesn't hold at LF, but rather at the C-I interface!

6

Adjunction and Late Merge

- Binding into complement clauses and adjunct clauses shows different behavior:
(45) Complement clause:
${ }^{\star}$ Which claim [that John ${ }_{i}$ was asleep] did he ${ }_{i}$ discuss?
(46) Relative clause:

Which claim [that John ${ }_{i}$ made] did he ${ }_{i}$ discuss?

- The Preference Principle, however, predicts that these two cases should behave similarly.
- In both cases, John should be interpreted below he, leading to a Principle C violation:
(47) [[Which claim [that John was asleep]]]?
(48) [[Which claim [that John made]] did he discuss [claim [that John made]]]?
- So, at first glance, these examples should not behave differently with respect to Principle C.

This pushes part of the job out of the syntax and into the interpretational component of the grammar. While the syntax creates the configurations for binding, binding itself ceases to be a syntactic phenomenon.

- Here, we have to employ a trick, based on work in GB by Lebeaux (1988). The idea is that adjuncts can merge later than arguments.
- Recall that the Extension Condition requires that Merge target the root:

(49) Extension Condition:

Overt applications of Merge can only target root syntactic objects.

- The structure in (47) is thus built by repeated applications of Merge, always targeting the root.
(50) a. [CP that John was asleep]
b. [NP claim that John was asleep]
c. [DP which claim that John was asleep]
d. [VP discuss [DP which claim that John was asleep]]
\vdots
e. [CP [DP which claim that John was asleep] did he discuss [DP which claim that John was asleep]]
- If adjuncts can undergo so-called Late Merge, then they are not subject to the Extension Condition.
(51) a. $\quad\left[{ }_{C P_{1}} O p_{i}\right.$ that John made $\left.t_{i}\right]$
[$C_{C P_{2}}$ did he discuss [DP which claim]]
b. $\quad\left[{ }_{C P_{1}} O p_{i}\right.$ that John made $\left.t_{i}\right]$
[CP2 ${ }_{C P_{2}}$ [which claim] did he discuss [DP which claim]]
c. $\quad\left[C P_{2}\right.$ [[which claim] $\left[{ }_{C P_{1}} O p_{i}\right.$ that John made $\left.\left.t_{i}\right]\right]$ did he discuss [DP which claim]]
- If we do this, then it will not be possible to reconstruct John into a position below the pronoun.
- We are borrowing technology from GB again, but we still need to refer to any levels of representation beyond LF.

6.1 Empirical problems

- Given that adjunction has been problematic before, we might just say that the exceptionality of adjunction with respect to the Extension Condition is just how adjunction works.
- But this is just a stipulation; we should want this fact to fall out from something else, if it is even true.
- Consider, for example, the impossibility of extraction out of an adjunct:
(52) *Which book $_{i}$ did you talk to Sally [before buying t_{i}]?

Now that movement is Copy +
Merge, we need not distinguish move in this definition.

Note that within GB, Lebeaux's proposal seems to undermine the entire concept of DS, since not all of the material in the derivation need be present at that level.

- Let's assume for the moment that this is the result of the copying operation being unable to target material in adjuncts.
- The problem is that if adjuncts like before buying don't merge until later in the derivation, it should be possible to copy which book out of the adjunct before it becomes an adjunct.
- Presumably, we would build the adjunct separately from the rest of the clause before we merge it:
(53) a. $\mathrm{K}=[\mathrm{pp}$ before pro buying [which book]]
b. $\mathrm{L}=[$ did you [vp talk to Sally $]$]
- At this point, the operation Copy should still be able to copy which book because the PP has not yet become an adjunct.
(54) a. $\mathrm{K}=[\mathrm{pp}$ before Pro buying [which book]]
b. $\mathrm{L}=[$ did you [vp talk to Sally] $]$
c. $\mathrm{M}=$ [which book]
- Now that we have copied which book, we should be able to merge M and L:
(55) a. $\mathrm{K}=[$ pp before Pro buying [which book]]
b. $\mathrm{N}=[$ [which book] did you [vp talk to Sally] $]$
- And now we late merge the adjunct PP and reduce the chain:
(56) [[which book] did you [vp [vp talk to Sally] [pp before pro buying]l]
- Nothing so far prevents this, but it allows us to derive the ungrammatical (52).
- And if we take seriously the idea that adjuncts can merge late, it's not clear what could prevent it.

6.2 A sideward solution

- These cases of so-called sideward movement are a real problem for the Late Merge hypothesis.
- However, if we take sideward movement seriously and restore the Extension Condition, it turns out that things still work out alright.
- Let us reconsider (46), repeated here:
(57) Which claim [that John ${ }_{i}$ made] did he ${ }_{i}$ discuss?
- Again, assume that the adjunct and the main clause are built in parallel.

Remember: Under our current systems, being an adjunct is determined relationally when the element merges.

And it won't become an adjunct until it merges.
(58) a. $\mathrm{K}=[$ did he discuss [which claim]]
b. $\mathrm{L}=\left[O p_{k}\right.$ that John made $\left.t_{k}\right]$

- As above, we can copy which claim:
(59) a. $\mathrm{K}=[$ did he discuss [which claim] $]$
b. $\mathrm{L}=\left[O p_{k}\right.$ that John made $\left.t_{k}\right]$
c. $\mathrm{M}=$ [which claim $]$
- But now we can merge L and M , merging the relative clause with the $w h$-phrase:
(6o) a. $\mathrm{K}=[$ did he discuss [which claim] $]$
b. $\mathrm{N}=\left[[\right.$ which claim $]\left[O p_{k}\right.$ that John made $\left.\left.t_{k}\right]\right]$
- The resulting element can now merge with K. Overall, this has the same effect as late merger of the relative clause, but the whole derivation obeys the Extension Condition:
(61) [[which claim] [$O p_{k}$ that John made $\left.t_{k}\right]$] [did he discuss
- Importantly, this cannot derive (45), repeated here:
(62) *Which claim [that John $_{i}$ was asleep] did he ${ }_{i}$ discuss?
- The problem here is that the complement clause is the complement of claim. If we wait to copy which claim and then try to merge the complement clause with the $w h$-phrase, we will not wind up with the correct structure.
(63) Build structures:
a. $\mathrm{K}=$ [did he discuss [which claim]]
b. $\mathrm{L}=$ [CP that John was asleep]
(64) Copy wh-element:
a. $\mathrm{K}=$ [did he discuss [which claim]]
b. $\mathrm{L}=$ [CP that John was asleep]
c. $\mathrm{M}=$ [which claim]
(65) Merging L and M generates wrong structure:
a. $\mathrm{K}=[$ did he discuss [which claim]]
b. $\mathrm{N}=[[$ which claim $][\mathrm{CP}$ that John was asleep $]]$

We want: [which claim [that John was asleep]]

- Merging the CP with which claim as a complement would violate the Extension Condition.
- The only alternative is to assume that the complement clause merges with claim as part of the main derivation.

References

Chomsky, Noam. 1993. A minimalist program for linguistic theory. In The View from Building 20, ed. Kenneth Hale and Samuel Jay Keyser, 1-52. MIT Press.
Chomsky, Noam, and Howard Lasnik. 1993. The theory of principles and parameters. In Syntax: An International Handbook of Contemporary Research, ed. J. Jacobs, A. von Stechow, Wolfgang Sternefeld, and T. Vennemann, 506-69. Berlin: Walter de Gruyter.
Fox, Danny. 1999. Economy and Semantic Interpretation. Number 35 in Linguistic Inquiry Monograph. Cambridge, Mass.: The MIT Press.

Lebeaux, D. 1988. Language acquisition and the form of the grammar. Doctoral Dissertation, University of Massachusetts Amherst.
Nunes, Jairo. 2004. Linearization of Chains and Sideward Movement. Number 43 in Linguistic Inquiry Monographs. Cambridge, Mass: MIT Press.
Prince, Alan, and Paul Smolensky. 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar. Malden, Mass, and Oxford, UK: Backwell.
Vicente, Luis. 2009. A Note on the Copy vs. Multidominance Theories of Movement. Catalan Journal of Linguistics 8:75-97.

